Maths Calculation Policy

The following Calculation Policy has been largely adapted from the White Rose Maths Hub Calculation Policy, with additional material from Power Maths, and meets requirements of the National Curriculum 2014 for the teaching and learning of mathematics, in accordance with an increased emphasis on fluency and mastery of concepts. It is designed to provide pupils with a clear and smooth progression of learning through KS1 and KS2 and ensure that the teaching of calculation methods remains consistent across the 4 operations of addition, subtraction, multiplication and division. The consistent use of the CPA (concrete, pictorial, abstract) approach helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods. The school calculation policy builds progressively from the content and methods established in EVFS, with a recognition that concrete and pictorial representations of problems continue to play a valuable role throughout all key stages.

Age-stage expectations

The calculation policy is organised according to age-stage expectations as set out in the National Curriculum (2014); however, we recognise that pupils need to be taught at an appropriate level 'based on the security of pupil's understanding and their readiness to progress to the next stage' (National Curriculum). This 'readiness to progress' is a clear focus at this challenging time and there will be a clear emphasis on recapping and reviewing methods from previous years where needed.

Context for calculation

It is crucial that children are given real-life contexts and problems in which to use and apply their calculation methods. Children subsequently develop a more secure understanding of the purpose of calculations and learn to choose their operations with accuracy. This is a priority in an increasingly-challenging curriculum, with its focus on mastery.

Choosing a calculation method

Children must be taught and encouraged to use a simple process in deciding what approach to take to a calculation, ensuring that they select the most appropriate method for the problem, whether mental or written. Children need to be comfortable with a wide variety of strategies and representations in order to demonstrate this.

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10s and 1 s to develop their calculation strategies, especially in addition and subtraction.
Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, sum, altogether, subtract, subtraction, find the difference, take away, minus, less, fewer, more, group, share, equal, equals, is equal to, is the same as, groups, equal groups, double, times, multiply, multiplied by, divide, divided by, share, group, shared equally, half, times-table

KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, decrease, equal groups, the product of, sharing, grouping, bar model
In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.
Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Accurate use of mathematical language demonstrates understanding of concepts and children will be introduced to key words and concepts as appropriate. This is taken from Power Maths.

EYFS / Year 1 Addition			
Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: understanding the part-whole model Adding two 1digit numbers to 10	Use part-part-whole model; use cubes to add two numbers together, as a group or in a bar. Other resources can be used: teddy bears, shells, people, toy cars! The parts are 4 and 3. The whole is 7.	Children draw to represent the parts and understand the relationship with the whole. The parts are 4 and 3. The whole is 7.	$4+3=7$ 4 is a part, 3 is a part and the whole is 7.
Starting at the bigger number and counting on using number lines (using cubes or Numicon to help)	Start with the larger number and count on one by one. Bead strings can also be used.	A bar model to encourage children to count on rather than count all. Children may also draw a number line and count on in ones or in one jump.	$4+2=6$ Children place the larger number in their head and count on the smaller number to find the answer. They may also think of the number line as an abstract idea - what is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2?
Regrouping to make 10, using ten frames, counters, cubes and Numicon			$6+5=11$ Children start to understand the idea of equality: $6+\square=11$

Adding 1 and 2digit numbers to 20		Children draw the ten frame and counters / cubes. They may also partition the smaller number using the part-part-whole model to make 10	$\begin{aligned} & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Year 2 Addition			
Adding three 1digit numbers	Children should look for number bonds to 10, or doubles, to add more efficiently.	\square \square 16 \square Children may draw a part-whole model or bar models to help.	$7+6+3=16$ $7+6+3=16$ 10
Adding a 2-digit number and ones - not crossing 10 - crossing 10	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$ Practical apparatus used to find the number bond to 10	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. Children encouraged to count on from the larger number, crossing 10	Children can also use their number bonds to 10 to help: $38+5=43$ $8+5=13, \text { so } 38+5=43$

Years 3-6 Addition			
Adding numbers with up to 3 digits - no exchange Year 3	Use Base 10 to solve practically, adding the ones first then the tens Place value counters and grids will also be used (see below) with no regrouping (exchange)	Children may draw counters using a place value grid	They will use a written column method, adding the ones first, then the tens, then the hundreds $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
Adding numbers with up to 3 digits - with exchange Year 3 We will start with exchange into 1 column, before moving onto exchanges in more than 1 column	We will use Base 10 Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column-we exchange for 1 ten, when there are 10 tens in the 10 s column- we exchange for 1 hundred.	Children can represent the counters in a place value chart, showing where they need to exchange:	Column method used: start with the ones first, then the tens, then the hundreds $\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$

Adding several numbers of increasing complexity Year 6 Adding money and measures with different numbers of decimal places	As Year 5, using place value counters to add decimals	As Year 5	$\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ 20,551 \\ \hline 20,579 \end{array}$ $\begin{array}{lr} 23 \cdot 361 \\ \text { Insert zeros for } & 9 \cdot 080 \\ \text { place holders. } & 59 \cdot 770 \\ +\quad 1 \cdot 300 \\ \hline 93 \cdot 511 \end{array}$

Part-part-whole model Represent and use number bonds and related subtraction facts within 20	Use part-part-whole models to show the link to addition (the inverse) with practical equipment If 10 is the whole and 6 is one of the parts, what is the other part?	Draw the part-part-whole models pictorially	Move to using numbers within part-part-whole models
Make 10 using the ten frame	Use a ten frame and counters or cubes to create numbers and subtract using number bonds to 10 (partition the subtracted number) 14-5	Use number lines to count back to 10 and then beyond (bridging 10); they can also represent the ten frame pictorially and discuss what they did to make 10	How many do we take off first to get to 10 ? How many left to take off? $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$

Year 2 Subtraction			
Regroup a ten into 10 ones Regrouping $=$ exchange	Use Base 10 to show practically that we can exchange a 10 for 10 ones	Show the exchange of a 10 for 10 ones in pictures	Written calculation $20-4=16$
Partitioning to subtract (without exchange) Regrouping $=$ exchanging tens for ones	Use Base 10 to show how to partition the number when subtracting without exchange	Children draw representations of Base 10 and show the subtraction by crossing off $43-21=22$	Begin to use column methods for 2digit subtraction (without exchange) $\begin{array}{r} 43 \\ -21 \end{array}$
Column method with exchange (2-digit numbers)	Use Base 10 and place value counters to demonstrate exchange practically	Children can draw representations of Base 10 and place value to demonstrate understanding, showing the exchange	Children become more confident with the column method of subtraction (with exchange) $\begin{array}{r} 51 \\ 65 \\ -\quad 28 \\ \hline 37 \\ \hline \end{array}$
Make 10	Children count on to the next 10 and the rest using practical equipment	Use a number line to count onto next 10 and the rest	Written calculation $93-76=17$

Years 3-6 Subtraction

Column method with exchange (more than 4-digit numbers) Years $5 / 6$	See above - practical equipment still useful to consolidate understanding of exchange	See above	Formal column method (extend understanding of Os for place holders) $\begin{array}{r} 2 x^{\prime \prime} x^{\prime} 0{ }^{\prime \prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$
Column method to subtract numbers with up to 3 decimal places (same number of decimal places) Year 5	Place value counters to represent decimals	Children draw or represent counters on a place value grid that includes decimals	Formal column method, aligning decimal point accurately $\begin{aligned} & 4^{4}{ }^{1} .43 \\ & -2.7 \\ & \hline 2.73 \\ & \hline \end{aligned}$
Column method to subtract larger numbers; decimals (different number of decimal places) Year 6	See above - practical equipment still used where needed to give clarity	See above	

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{EYFS / Year 1 Multiplication} \\
\hline Objective and Strategy \& Concrete \& Pictorial \& Abstract \\
\hline Recognising and making equal groups: repeated addition \& \begin{tabular}{l}
Use cubes, Numicon and other objects in the classroom \\
\(3 \times 4\) \\
\(4+4+4\) \\
There are 3 equal groups, with 4 in each group. \\
Number lines can also be used to show repeated groups
\(\square\)
\(\square\)
\end{tabular} \& \begin{tabular}{l}
Represent practical resources in a picture and use a bar model \\
Pictorial representation alongside a number line
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 3 \times 4=12 \\
\& 4+4+4=12
\end{aligned}
\] \\
Abstract number line showing 3 jumps of 4
\[
3 \times 4=12
\]
\end{tabular} \\
\hline Doubling \& Use cubes, Numicon and other objects in the classroom \& \begin{tabular}{l}
Draw pictures to show how to double numbers \\
Double 4 is 8

\square
\square

\end{tabular} \& $4 \times 2=8$

\hline
\end{tabular}

Counting in multiples

Use cubes, Numicon and other objects in the
Draw representations to show counting in multiples
$2 \times 4=8$
$2,2 \quad 2 \quad 2$
10010001001001090010 olod
$\begin{array}{llllllllll}4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20\end{array}$

Year 2 Multiplication			
Arrays - showing commutative multiplication	Objects can be laid out in arrays to find 2 lots of 5 (and 5 lots of 2) for example. Physical objects can also be used to create arrays (cubes)	Children draw their own arrays to show understanding	$\begin{aligned} & 5 \times 4=20 \\ & 4 \times 5=20 \\ & 20=4 \times 5 \\ & 5+5+5+5 \end{aligned}$ Children can use the arrays to write multiplication sentences reinforcing repeated addition
Using the inverse relationship	Children will use practical objects to explore the relationship between multiplication and division		$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

	EYFS / Year 1 Division		
Objective and Strategy	Concrete	Pictorial	Abstract
Sharing objects into groups	Use cubes and other objects in the classroom	Children use pictures or shapes to share amounts into equal groups. They may also use arrays or bar models as different pictorial representations $\bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$	At this stage, children do not need to record division formally but can use language like '20 shared between 5 is 4^{\prime}
Division as grouping eg. I have 20 apples and put them in groups of 5 . How many groups do I have?	Use cubes and other practical manipulatives to group objects	Draw pictures to show groupings Children may also use number lines to count in groups, or multiples	$20 \div 5=4$ (children are introduced to the division symbol in Year 2)

Division within arrays (links to multiplication)	Children link division to multiplication by making arrays practically and creating number sentences $\begin{aligned} & 15 \div 5=3 \\ & 15 \div 3=5 \\ & 3 \times 5=15 \\ & 5 \times 3=15 \end{aligned}$	Children draw arrays and use lines to split them into groups, making multiplication and division sentences $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ 1000	Children create division and multiplication families $\begin{aligned} & 4 \times 5=20 \\ & 5 \times 4=20 \\ & 20 \div 4=5 \\ & 20 \div 5=4 \end{aligned}$
Repeated subtraction	Children use practical objects to subtract groups from a number ('chunks' of 2 for example)	Children represent repeated subtraction pictorially	Children use an abstract number line to represent the equal groups that have been subtracted
Division with a remainder (times tables facts; repeated subtraction)	Divide practical objects into groups and see how many are left over ('remainders'). Cubes, lollipop sticks etc can be used	Children draw pictures to show remainders when dividing \ominus remainder 2 $14 \div 3=4 r^{2}$	Children understand that not all numbers divide perfectly (links to times tables) $\begin{aligned} & 12 \div 3=4 \text { (no remainder) } \\ & 13 \div 3=4 \mathrm{r} 1 \end{aligned}$

Years 3-6 Division			
Division of 2digit numbers by a 1-digit number (no exchange: short division introduced as an efficient method) Year 3	Children use Base 10 to start dividing larger numbers, partitioning into tens and ones. Place value counters will also be used to share numbers into equal groups	Children can represent the place value counters pictorially (see left) Children continue to recognise division as both sharing and grouping throughout KS2	Bus stop method (no exchange) $\begin{array}{r} 32 \\ 3 \longdiv { 9 6 } \end{array}$
Division with a remainder Year 3	Children continue to explore division with remainders, reviewing smaller numbers using practical equipment (see Year 2)		
Division of 2digit numbers by a 1-digit number (sharing with exchange) Year 3	Children use Base 10 and then place value counters to exchange. Here, we are dividing 42 into 3 equal groups (or rows). We start with the tens; we can put 1 ten in each group and have 1 ten left over. We exchange this ten for 10 ones and then divide the ones equally between the 3 groups $42 \div 3=14$	Children draw the place value counters to demonstrate understanding (supporting the practical method). Children can clearly see the equal groups	Children extend understanding of the bus stop method using exchange (showing understanding of remainders) $3 \longdiv { 1 4 }$

